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Abstract—Considering the diverse application scenarios in-
volving wireless sensor networks (WSNs), accurate continuous
monitoring requires a solution to the essential task of estimating
unmeasured locations in the monitored space. In this paper,
we utilize ε-Smooth Support Vector Regression (ε-SSVR) to
report monitoring information of environment, furthermore
we combine spatial and temporal correlation to strengthen
monitoring accuracy. However if our sensors are too sparsely
deployed, the resulting coverage holes problem will adversely
impact the monitoring result. Therefore, we utilize Uniform De-
sign and different local interpolation methods to assist ε-SSVR
to mitigate the coverage holes problem. In our experiment,
we compare our method with different methods applied to
different sensors deployments. ε-SSVR has better accuracy and
computation speed than others. Besides continuous monitoring,
we also propose a distributed anomaly detection mechanism to
report anomaly information, in order to provide a reliable and
real time anomaly monitoring system.

Keywords-ε-SSVR; wireless sensor networks; anomaly detec-
tion; continuous monitoring;

I. INTRODUCTION

In the past few years, wireless sensor networks (WSNs)

have been widely applied in different domains (e.g., agri-

culture, traffic control, and the management of indoors

environments [2, 7, 24, 29]). WSNs are used to monitor and

track events of concern [37]. For example, through the use

of sensors farmers are able to monitor environmental factors

such as temperature and humidity giving them the chance

to react quickly to changing crop conditions and ensure an

optimal harvest. In many cases, the value of these WSNs

lies in their ability to act as precise continuous monitoring

systems. It is desirable to monitor the region of interest

as uniformly and densely as possible, however, it is often

impractical to do due to restrictions in sensor placement and

availability. In order to reduce this problem, interpolation

methods are often used to fill in the blanks where there are

no sensors. Traditional methods include Ordinary Kriging

(OK) and Inverse Distance Weighting (IDW) [36,37], which

calculate a weighted sum of measurements from surrounding

sensors to interpolate a surface over the region. However,

if there is large variability in the data environment, it may

cause great monitoring error, because the interpolated values

will fall within the minimum and maximum reading range,

which will underestimate the highs and overestimate the

lows.

In order to solve this problem, we use ε-Smooth Support

Vector Regression (ε-SSVR) [22] to interpolate a surface

over the region. ε-SSVR constructs a regression model over

all the sensors, and predicts the region values. Predicted

results are not subject to maximum and minimum range

limits, which can effectively reflect real environment. In

addition to consider the spatial influence of sensors, we also

refer to historical information to strengthen our calculation

[31]. Taking into account existing spatial and temporal

relationships allows more accurate interpolation. In spite

of ε-SSVR having good ability for interpolation, it will

perform poorly if sensors are too sparsely deployed due to

the coverage holes problem [1]. Several different reasons

will cause coverage holes. (1) Obstacles of different forms

such as mountains, lakes and rocks [32]. (2) Technical

failures, malicious activities or power exhaustion cause

accidental death of the nodes [25]. (3) Scale or the hostility

of monitored area such as ocean buoys. [30].

To combat the coverage holes problem, we generate

synthetic sensors in the field using Uniform Design (UD)

[19] so that projecting the location of synthetic sensors

onto any dimension results in a uniform distribution. The

UD seeks its design points to be uniformly scattered on

the experimental domain. This guarantees that all coverage

holes will have at least one synthetic sensor. Next, we

find a localized estimate for the synthetic sensor readings

using one of the aforementioned methods, Ordinary

Kriging or Inverse Distance Weighting, over their K

nearest neighboring real sensors. Since the synthetic sensor

readings are predicted, the error is larger compared to the

real sensors, thus we give a higher level of fault-tolerance

to the synthetic sensor than we do to the real sensors in

the model training stage. Low fault-tolerance means that

we will adjust model hyperplane for tiny error in fitting a

given data set linearly or nonlinearly, otherwise means we

will ignore tiny errors. Our ε-SSVR allows the integration

of synthetic and real sensors to improves the performance

and monitoring accuracy when there are coverage holes. In

our experiments, we show that our approach can get better
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performance than other interpolation methods not only

in terms of monitoring accuracy but also computation speed.

In addition to continuous monitoring, we also detect

anomalous events through a distributed anomaly detection

mechanism [5,9,27,28]. Distributed anomaly detection can

be divided into two phases. The first part is the front-end

detection, where a simple anomaly detection model is

constructed on each sensor, the purpose of which is to

detect anomalous events in real-time. The second part is

the back-end detection, which uses various of continuous

monitoring result to detect anomalies, and provides a visual

interface allowing users to understand the scope of the

occurrence of the anomaly. These two steps are combined

to achieve real-time and reliable anomaly detection.

This paper is organized as follows. Sec. II, we ad-

dress some related works of the continuous monitoring

and anomaly detection. Sec. III describes our approach of

continuous monitoring and how to combine spatial and

temporal correlation. The strategy of coverage holes problem

is introduced in Sec. IV. In Sec. V, we describe how to utilize

distributed anomaly detection mechanism to implement real

time anomaly detection. Our experiment result is showed in

Sec. VI. The conclusion and future work will be described

in Sec. VII.

II. RELATED WORK

We discuss related work in this section, include con-

tinuous monitoring and distributed anomaly detection. In

continuous monitoring, interpolation is the most common

method for creating the surface over the region. Two fa-

mous interpolation methods are Kriging and inverse-distance

weighted interpolation (IDW). Jafar et al. [36] Dale et al.

[37] and Reiner et al. [18] compared these two methods

in different environments. All results show that Kriging

performs much better than IDW, because Kriging not only

considers the distance from the sensors, but also takes into

account all sensor’s correlations. George et al. [23] and

Mohammad et al. [14] modified the IDW formula so that

it achieved higher monitoring accuracy than Kriging. Both

methods are not only utilized in monitoring, but can also

be used to reduce coverage holes and discover anomalies.

Muhammad et al. [20] used Kriging to reconstruct regions

with coverage holes. Yunfeng et al. [35] used different

interpolation methods to discover soil heavy metal pollution.

It can be seen that continuous monitoring is widely use

for different goals. Furthermore, Uwe et al. [13] used radar

readings to modify the kriging result in order to consider

more physical factors.

Tomislav et al. [16] proposed Regression Kriging to

monitor the region of interest. This method is most similar

to ours, because it combines regression and interpolation

to make estimates. Regression Kriging utilizes linear

regression to predict all the unmeasured locations, next it

modifies the regression residual through Ordinary Kriging;

these steps can efficiently promote monitoring accuracy.

However, Regression Kriging does not solve the coverage

holes problem. Our ε-SSVR utilizes uniform design and

different fault tolerance settings to reduce this problem.

In their survey of distributed anomaly detection, Miao

et al [34] and Varun et al [8] cover different categories

of anomalies and solutions to detecting these anomalies.

Distributed anomaly detection has higher computation speed

than centralized method, and can be implemented in real-

time anomaly detection systems. However, sensors have a

rather limited amount of computational resources available.

In order to implement distribution in each node, previous

researchers proposed several anomaly detection algorithms.

Vassilis et al. [12] defined a threshold based on environment

variance to determine anomalies. Sutharshan et al. [21] and

Wenliang et al. [11] used local clustering to distinguish

normal data and anomalies at each node. Joel et al. [6] not

only detected anomalies but also reduced communication

energy cost. In addition to detecting anomalies at a single

node, people also want to know the region where the

anomaly occurred. Franke et al. [10] used a simple threshold

method to determine the range within which the anomaly

may have occurred. Annalisa et al. [4] rely on spatial and

temporal correlation to predict anomalous event locations.

Our distributed anomaly detection uses front-end and back-

end mechanisms, can detect anomalies in real-time at each

sensor node, and provides a visual interface allowing users

to understand the scope of the occurrence of the anomaly.

III. CONTINUOUS MONITORING VIA ε-SSVR

A. Continuous Monitoring

Figure 1 shows the process of our continuous monitoring.

First, all the sensor readings are aggregated at the base

station, where they are synchronized and then filtered and

cleaned. Next we evaluate all sensors’ coverage over the

region. If the sensors did not adequately cover all locations,

we use uniform design and an interpolation method to create

synthetic sensors to reduce coverage holes. Otherwise, we

only need to use ε-SSVR. Finally, we produce a continuous

visualization map. This allows users to receive in real-time

information about changes in the environment.

B. The ε-Smooth Support Vector Regression

In conventional regression, we are given a training dataset

S = {(x1, y1), . . . , (xm, ym)} to find function f(x) with

least squares error where xi ∈ Rn is independent variable

and yi ∈ R is dependent variable. The least squares problem

is formulated as following:

min
(w,b)∈Rn+1

m∑
i=1

‖(yi − x�i w − b)‖22, (1)
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Figure 1. The process of continuous monitoring.

where w ∈ Rn is weight, b ∈ R is bias.

Different from conventional regression, ε-support vector

regression adds a tolerance variable in its optimization

process to discard small errors in fitting the given dataset

linearly and nonlinearly. The loss function is written as

(|Aiw + b − yi|ε) = max{0, |Aiw + b − yi| − ε}. Using

this loss function means if it is not over the critical range,

the error will be zero. Figure 2 diagrams the fault-tolerant

mechanism of ε-insensitive regression.

The ε-SVR can be formulated as a constrained minimiza-

tion problem in Equation (2)

min
(w,b,ξ,ξ∗)∈Rn+1+2m

1

2
w�w + C1�(ξ + ξ∗)

s.t. y −Aw − 1b ≤ 1ε+ ξ (2)

Aw + 1b− y ≤ 1ε+ ξ∗

ξ, ξ∗ � 0,

where w�w is the regularization term, ξ ∈ Rm is the

slack variable, A ∈ Rm×n and m observations of real value

associated with each point. y ∈ Rm is the response vector,

w ∈ Rn and b ∈ R. ξ is greater than 0 when estimated

values fall outside the tube defined by ε, otherwise it is 0. As

seen in Figure 2, ξ will discard tiny errors in the modelling

procedure. Parameter C here weights the tradeoff between

the fitting errors and the flatness of the linear regression

function f(x). Increasing parameter C will achieve a better

accuracy on the training set, but it can lead to over-fitting.

This problem can be also formulated as an unconstrained

minimization problem with a squared 2-norm ε-insensitive

loss function given in Equation (3):

min
(w,b)∈Rn+1

1

2
w�w +

C

2

m∑
i=1

‖(|Aiw + b− yi|ε)‖22 (3)

(The weight is C
2 instead of C, to cancel out the extra

constant after differentiation.)

Figure 2. ε-insensitive regression. ε is a tolerance variable in its optimiza-
tion process to discard small errors in fitting the given dataset linearly and
nonlinearly. ξ will discard tiny errors in the modelling procedure.

A problem with the 2-norm ε-SVR is that it is not

twice differentiable. To make the objective function twice

differentiable, Lee et al [22] used the smooth p-function to

replace the minimizing error term ‖(|Aiw + b− yi|ε)‖22 of

ε-SVR. After being reformulated as the ε-insensitive smooth

support vector regression, the optimization problem can be

quickly solved using Newton’s method. The details of ε-

SSVR can be seen in [22]

C. The ε-Smooth Support Vector Regression with Nonlinear
Kernel

In order to generalize our experiments from the linear

case to the nonlinear case, we employ the kernel technique to

represent the inner product of two training points in a higher

dimensional feature space, so that our linear formulation

can be transformed into a nonlinear formulation. The kernel

function, K(x, z) =< Φ(x)·Φ(z) >, merges two steps. Step

1: mapping the input data from input space to feature space.

Step 2: calculating the inner product in the feature space.

There are many forms of kernels and the Gaussian (Radial

Basis) kernel (shown in Equation (4)) is one of the most

commonly used:

K(A,A�)ij = e−γ‖Ai−Aj‖22 , i, j = 1, 2, . . . ,m. (4)
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γ is a tuning parameter determining how far the influence

of a single training example reaches. Low values tend to

result in under-fitting, and higher values tend to result in

over-fitting.

D. Spatial and Temporal Correlation
We will describe how to combine spatial and temporal

correlation for model training stage in this section. Table I

are each sensor information from wireless sensor networks,

include ID, location, temperature and time.

Table I
SENSORS INFORMATION FROM WIRELESS SENSOR NETWORKS.

NodeID LocationX LocationY Temperature Time
1 0 120 27.4 00:38:27
2 40 80 23.7 00:38:27
3 80 40 23.5 00:38:27
4 120 0 23.7 00:38:27

The data all come from the same time. In our given

training dataset S = {(x1, y1), . . . , (xm, ym)}, xi = lo-

cationX and locationY and yi = Temperature. We use

two dimension locationX and locationY training regression

model to predict the temperature at unmeasured location.

In addition to considering spatial correlation, we also use

Auto-Regressive and Moving Average Model (ARMA) to

strengthen our prediction. ARMA models be used to predict

behavior of a time series from past values alone. Such a

prediction can be used as a baseline to evaluate the possible

importance of other variables to the system. We combine

past T values and the original two dimensional location

(locationX and locationY) to strengthen our prediction. Table

II data from one sensor at different times with the time

interval set to one minute. If we define T = 3, then the past

three yi temperatures will be added into the feature set. For

example, node 1’s feature set xi = [0, 120] will become xi =

[0, 120, 27.4, 27.9, 30.1]. Combining location and past labels

to train the model works better than only considering spatial

correlation, because some nodes may not be affected by

their neighbors. In spite of ε-SSVR having good ability for

monitoring, it will perform poorly if sensors are too sparsely

deployed due to the coverage holes problem. To address this

problem, we proposed using ε-SSVR with synthetic sensors.

The details will be described in the following section.

Table II
ONE SENSOR INFORMATION IN DIFFERENT TIME.

NodeID LocationX LocationY Temperature Time
1 0 120 27.4 00:38:27
1 0 120 27.9 00:39:27
1 0 120 30.1 00:40:27
1 0 120 31.4 00:41:27

IV. REDUCING COVERAGE HOLES PROBLEM

In this section, we will introduce how to reduce the

coverage holes problem. Several different reasons will cause

coverage holes. (1) Obstacles of different forms such as

mountains, lakes and rocks. (2) Technical failures, malicious

activities or power exhaustion cause accidental death of

the nodes. (3) Scale or the hostility of monitored area

such as ocean buoys. Coverage holes happen when sensors

are distributed too sparsely. This phenomenon will cause

large prediction errors of ε-SSVR. Predicting the value of

variables in the coverage hole is difficult due to there being

no sensors values on which to rely. In order to reduce this

problem, we proposed a sampling method uniform design

to solve.

A. Synthesizing Sensors via Uniform Design Sampling

Uniform design (UD) was first proposed by Fang et al

[19]. The uniform design is one kind of space-filling designs

that can be used for computer and industrial experiments.

The UD seeks its design points to be uniformly scattered

on the experimental domain. This is a method to uniformly

generate nodes in different amount. Figure 3 shows the

different uniform design patterns, include nine points and

thirteen points, as the case to decide which pattern to

used. We use these patterns to generate various amounts of

synthetic sensors. The advantage of using uniform design to

do this is that projecting the location of synthetic sensors

onto any dimension results in a uniform distribution. This

guarantees that all coverage holes will have at least one

synthetic sensor. Although synthetic sensors are not real,

they can help with our prediction result. We combine real

sensors and synthetic sensors, where the coverage holes have

been filled by synthetic sensors.

B. Combining Local Interpolation Methods and ε-SSVR

After deploying our synthetic sensors, we need have them

calculate readings to help in the training model stage. We

utilize different localized interpolation methods to estimate

synthetic sensor readings, because they are suitable to be

used in environments with low variability. It is our as-

sumption that each local field has low variability. Figure 4

shows the interpolation process. First, we generate synthetic

sensors in the field and calculate distances between real and

Figure 3. Uniform design sampling cases include nine points and thirteen
points.
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Figure 4. Generate 13 synthetic sensors in the field and selects its K
nearest neighboring (K=3) real sensors to interpolate values.

synthetic sensors. Next, every synthetic sensor selects its K

nearest neighboring real sensors to interpolate values from.

Finally, we combine values from the real and synthetic

sensors to train our model. Due to the synthetic sensor

readings being predicted, their errors are larger compared

to the real sensors. Therefore, we use different values of ε
for ε-SSVR to decide our fault-tolerance. Low ε means that

we will adjust model hyperplane for tiny errors in fitting a

given data set linearly or nonlinearly, otherwise means we

will tolerate large errors. So we give a low ε for real sensors

to indicate a low fault-tolerance rate, and give a high ε for

synthetic sensors. Integration of synthetic and real sensors

improves the performance and monitoring accuracy when

there are coverage holes.

V. DISTRIBUTED ANOMALY DETECTION MECHANISM

In this section, we will introduce how to detect anoma-

lies via our distributed anomaly detection. Our distributed

anomaly detection is composed of a front-end and back-

end mechanism, and can detect anomalous events in real-

time, while also providing a visual interface allowing users

to understand the scope of the anomalous.

A. Front-End Detection

Front-end anomaly detection proceeds in every individual

sensor, whereby it immediately checks for error readings and

avoids severe factor changes. However, sensors have small

computation ability and storage so they can only use simple

models for detection. We propose a front-end anomaly

detection method which we call dynamic range checking.

This method detect the anomalous portions the new incom-

ing data by comparison with previous records. Dynamic

range checking aggregates past data by storing the mean

and standard deviation and updating these statistics as new

readings arrive. For example, if we assume T = 10, where

T is the time series window size, dynamic range checking

calculates the mean and standard deviation using the past ten

time series data values in each time interval, and updates

new readings to replace the oldest reading in the time

window. Due to sensors having such a small computation

ability the mean and standard deviation (std) formula should

have as reduced a computational complexity as possible. In

general, the formula for the mean is
∑T

i=1 xi

T , for the std it is
∑T

i=1(xi−mean)

T , where xi is the reading at time i, mean is

the previously calculated mean. The time complexity of the

above two calculations is O(T), because all the time windows

after the new reading are recalculated. Therefore, we revise

the formula for the mean to
mean∗T−x1+xT+1

T , and for the

standard deviation to
((mean2+std)∗T−x2

1+x2
T+1

T − mean2,

where std is the previously calculated standard deviation,

and xT+1 is the new reading. The time complexity is now

O(1) after revising the formula, since we only need to store

the previous mean and standard deviation. If we assume T is

very large, the savings in computational cost will be improve

greatly.

Figure 5 shows the anomaly detection procedure by

dynamic range checking. The blue line is the sensor reading

and the red dashed is 3 times the standard deviation (several

times as the case may be decided). Data readings from close

intervals are expected to have similar distributions to those

from inside the 3 times standard deviation range, so some

readings outside the boundary are considered anomalies.

B. Back-End Detection

Our back-end detection is based on the result from con-

tinuous monitoring, and runs at the base station therefore

computational and storage cost is less of a concern. The

goal of the back-end detection is finding dangerous areas

and places with changes in environmental factors. During

continuous monitoring, we keep the past T maps, where T

is the time series window size, and we take the average

of those maps. Next, we use the average map to determine

the range of the anomaly. After the new map is created, we

take the difference between these two maps. If the result has

any region higher than the threshold, then we will report an

anomaly message.

C. Architecture

Our anomaly detection architecture is summarized in

Figure 6. Wireless sensors collect environment readings

which are aggregated at the base station. Simultaneously,

each sensor stores the past T readings to detect front-end

anomalies. Users can get information about anomalies in

Figure 5. Dynamic range checking. The blue line is the sensor reading
and the red dashed is 3 times the standard deviation. Some readings outside
the boundary are considered anomalies.
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Figure 6. Anomaly detection architecture.

real-time. After data aggregation, we utilizes our continuous

monitoring method ε-SSVR to produce a continuous visual-

ization map. Visualization can help the user to understand all

fields. Back-end detection utilizes a length T visualization

map difference to detect anomalies. Messages will be sent

to the user who can decide how to deal with the anomaly

problem.

VI. EXPERIMENTS

A. Dataset Description and Experimental Setting

Our experiments were conducted as part of Intel-NTU’s

smart agriculture demo. Intel-NTU is a research cen-

ter whose mission is to explore new M2M (Machine-to-

Machine) technologies for the future. A smart agriculture

system was set up in a green house in Chiayi which could

monitor the growth conditions of orchids. Of the sensor

nodes used, a portion were attached to fixed metal beam.

These are the fixed nodes. Other sensor nodes were then set

up on a mobile plant bed. We call them the mobile nodes

because the plant bed can move around the green house.

The smart agriculture demo simulated the operation of an

actual real green. 25 sensors were uniformly deployed in a

160x160cm region to collect temperature and humidity data.

Uniform distribution is convenient for validation, because

removing a portion of the sensor nodes allows us to simulate

coverage holes where we can calculate our error rate by

comparing the original value and the predicted value. To

simulate moving nodes, we can remove different sensors

at different times. The 25 sensors are 40cm apart and the

data collection period is one minute. An electric heater fan

heats the lower left corner of the region to simulate the

heat generated by increased sunshine. A heater fan heats

diffusively, so each sensor will slowly warm up over time.

Simulating an environment with high variability is important

due to anomalous conditions being of great concern, and

we want to show that our method accurately monitors

anomalous temperature information.

We compare our method with Ordinary Kriging(OK) and

Inverse Distance Weighting(IDW) in MATLAB. For OK we

used the freely available kriging toolbox from Thomas [15] ,

and we reimplemented IDW. OK has two parameters, range

and sill, which need to be set. Range is set to 225 and sill

is set to 10 to interpolate all global surfaces. Range is set

120 and sill set 8 to interpolate local surfaces. We wrote

two versions of IDW for global and local interpolation. The

following values were decided empirically through manual

tuning. ε-SSVR also has some default parameters to set.

Parameter C is set to 316.22 and parameter γ is set to

0.0000757. C weights the tradeoff between the fitting errors

and the flatness of the linear regression function f(x), and

γ is a tuning parameter determining how far the influence

of a single training example reaches. ε1 is fault-tolerance

for real sensors, and ε2 is for synthetic sensors. ε1 is set to

0.01 and ε2 is set 0.6. Smaller values mean a lower fault-

tolerance rate. We used a uniform design pattern with nine

points. Parameter k is how many nearest neighbours to use

for local interpolation, the default is set to 3. Parameter T is

the time window size, used determine how much historical

information to use when training our model and is the front-

end and back-end anomaly detection window size, set to 5.

B. Experimental Results

As mentioned above, we randomly removed a group

of sensors to validate our monitoring result, and calculate

MAE and RMSE. MAE formula is
∑n

i=1 |fi−yi|
n and RMSE

formula is

√∑n
i=1(fi−yi)2

n , n is time stamp size 20, fi is

the prediction value and yi is the true value. We take 20

rounds average for MAE and RMSE. However only using
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Figure 7. Result of experiment 2. Random deployment of 6 points. (a) is ground truth of 25 points. (b), (c), (d), (e) respectively are ε-SSVR, ε-SSVR+OK,
IDW and OK. (c) has a result closest to (a), proving that our method can effectively deal with the problem of coverage holes.

one random deployment to compare the accuracy is not fair,

so we repeated this procedure of randomly remove different

sensors 100 times. Total calculation amount is 2000 rounds

for MAE and RMSE. We also calculate each round’s stan-

dard deviation to guarantee decreased variation. In setting

1, we want to know the performance of relatively uniform

distribution condition, therefore we just randomly removed

10 of the sensors from the 25 total sensors. Table 3 shows

the result of our methods, IDW and OK. ε-SSVR(S+T) is

considering spatial and temporal correlation, ε-SSVR+OK

and ε-SSVR+IDW are interpolating synthetic sensors by

Ordinary Kriging and Inverse Distance Weighting. OK gets

best monitoring result as measured by MAE and RMSE,

but the running time is higher than one minute, which is

unacceptable. IDW although has high speed for monitoring

but bad accuracy. All our methods are as accurate as OK,

and the processing time of each figure is never larger than

3 seconds.

Table III
RESULTS UNDER THE SETTING OF RELATIVELY UNIFORM

DISTRIBUTION CONDITION.

Method MAE RMSE STD CPU sec.
IDW 1.845 2.185 0.317 0.2269
OK 1.103 1.396 0.282 64.1239
ε-SSVR 1.168 1.44 0.276 0.1126
ε-SSVR(S+T) 1.156 1.424 0.279 1.2374
ε-SSVR+OK 1.134 1.396 0.266 0.2233
ε-SSVR+OK(S+T) 1.127 1.385 0.271 2.5673
ε-SSVR+IDW 1.136 1.395 0.271 0.1744
ε-SSVR+IDW(S+T) 1.128 1.385 0.271 1.6626

Next we show the coverage holes case in setting 2.

Randomly removing 19 of the 25 sensors, leaves only 6

sensors in the field. Table 4 is the result of experiment

2. ε-SSVR and ε-SSVR(S+T) have the worst accuracy

in monitoring, even worse than IDW. ε-SSVR+OK and

ε-SSVR+IDW purpose is to improve the coverage holes

problem. In the result, their MAE and RMSE is better than

others, and can plot a diagram in 0.19 seconds. Figure 7 is

the visualization map of experiment 2 in one of the random

deployment. (a) is the ground truth of 25 points. (b), (c), (d),

(e) respectively are ε-SSVR, ε-SSVR+OK, IDW and OK.

ε-SSVR+OK is most similar to the ground truth, proving

that our method can effectively deal with the coverage holes

problem. Looking at these two experiments, our method not

only has better accuracy and computation speed, but is also

suitable for any situation.

Table IV
RESULTS UNDER THE SETTING OF COVERAGE HOLES.

Method MAE RMSE STD CPU sec.
IDW 1.865 2.313 0.405 0.0126
OK 1.665 2.099 0.41 57.8343
ε-SSVR 1.935 2.392 0.912 0.092
ε-SSVR(S+T) 1.933 2.389 0.919 0.75
ε-SSVR+OK 1.563 1.983 0.443 0.19
ε-SSVR+OK(S+T) 1.557 1.979 0.445 2.1479
ε-SSVR+IDW 1.561 1.99 0.472 0.1424
ε-SSVR+IDW(S+T) 1.557 1.986 0.476 1.0125

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a high quality con-

tinuous monitoring system based on spatial and temporal

dependencies present in sensor data, which are used to

address the issue of sparse sensor deployment and coverage

holes. Furthermore, we developed front-end and back-end

anomaly detection methods based on distributed anomaly

detection mechanisms. In our experiments, our approach can

get better performance than other interpolation methods not

only in terms of monitoring accuracy but also in terms of

computation speed.

Our experiments target a small-scale environment. Real

world applications often require deploying sensors in a large-

scale environment as needed. Therefore, how to monitor

a large area via interpolation or prediction is of great

importance. Gustavo et al. [17] and Wei et al. [33] proposed

distributed kriging method, which make the field is divided

into sub-blocks according to trends. Annalisa et al. [3] use

distributed IDW. As the scale of the sensor deployment

scales up, another issue is the sheer amount of data gathered.

Christine et al. [26] use map-reduce structure deal with this

sort of big data issue in the domain of wireless sensor
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networks. Therefore, how to extend our method in large-

scale and deal with big data are an important future work.
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